Macaroni: Crawling and Enriching Metadata from Public Model Zoos

Image credit: Unsplash


Machine learning (ML) researchers and practitioners are building repositories of pre-trained models, called model zoos. These model zoos contain metadata that detail various properties of the ML models and datasets, which are useful for reporting, auditing, reproducibility, and interpretability. Unfortunately, the existing metadata representations come with limited expressivity and lack of standardization. Meanwhile, an interoperable method to store and query model zoo metadata is missing. These two gaps hinder model search, reuse, comparison, and composition. In this demo paper, we advocate for standardized ML model metadata representation, proposing Macaroni, a metadata search engine with toolkits that support practitioners to obtain and enrich that metadata.

Create your slides in Markdown - click the Slides button to check out the example.

Supplementary notes can be added here, including code, math, and images.

Ziyu Li
Ziyu Li
PhD Candidate of Computer Science

My research interests are to apply metadata of different artifacts (e.g., machine learning model, dataset) to improve the effectiveness and efficiency of machine learning workflows.